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We implement a recently proposed exact method for solving distrete statistical 
models for the 3-dimensional Ising model with open boundary conditions. Our 
computations were done on the Connection machine because the problem maps 
very naturally onto massively parallel architectures. We explicitly calculate the 
number of states of the system at each energy for systems of size 5 x 4 x L, for 
Lz ~< 5. On serial or vector computers, the time for the computation scales with 
the volume V like V2 L-'L~. On the Connection Machine, the calculation can be 
spread across the processors. This decreases the computation requirements by a 
factor equal to the number of processors. We describe the method, its 
implementation on the Connection Machine both in PARIS and in FORTRAN, 
and our results. We also state the requirements for solving larger systems using 
this method. 

KEY WORDS: Ising; exact; partition function; massively-parallel architec- 
ture; zeros; critical exponents. 

1. I N T R O D U C T I O N  

The  n u m b e r  of  s tates  in an  L x x Ly • Lz Is ing m o d e l  is 2 v, where  V =  

L x L y L z  is the  la t t ice  vo lume .  G e n e r a t i n g  one  s ta te  eve ry  n a n o s e c o n d ,  it 

w o u l d  t ake  a b o u t  4 x 1013 years  to gene ra t e  all s ta tes  for  a cube  of  size 

4 x 5 x 5. P e a r s o n  (1) first desc r ibed  a m e t h o d  tha t  m a d e  it poss ib le  to cut  

d o w n  the  n u m b e r  o f  s tates  g e n e r a t e d  to a squa re  r o o t  o f  the  to ta l  n u m b e r  

and  he used the  m e t h o d  to solve  a 4 x 4 x 4 system. Recent ly ,  insp i red  by  

Thinking Machines Corp., Cambridge, Massachusetts 02142. 
2 0n  leave from Physics Department, San Francisco State University, San Francisco, Califor- 

nia, and Supercomputer Computations Research Institute, Florida State University, 
Tallahassee, Florida. 

3 Physics Department, Boston University, Boston, Massachusetts 02215. 
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earlier work of Binder, (2) Bhanot (3~ has described a method to solve the 
problem in a time that scales for serial and vector computers like V2 v/LZ. 
For massively parallel computers such as the Connection Machine, it is 
obvious that with 2 p processors, the computer time scales like V2 LxL)'-n, 
since the calculation can be spread out across the processors. For  the most 
direct implementation of the method, the storage required scales like 
VIV2 v/Lz, where V'= 3 V -  L x L y -  L y L z -  L~L x for open boundary 
conditions. V' is the number of bonds in the system. It is also the 
maximum possible value of the total energy. As a described below, the 
storage requirement can be reduced to 

V' log(c)'] 2v/L ~ 
2m V + m ~  j 

where m and c are integers (m ~ [1, V'/2] and c = 1, 2, 3, 4,...). In this case, 
however, one needs to do about V'/2m separate runs at different values of 
c (and fixed m) and reconstruct the full solution from these runs. However, 
each of the runs needs less computations by just the correct factor to 
ensure that the total computational requirements remain the same. 

2. T H E  M E T H O D  

The method we will use is described in ref. 3. The present paper should 
be read in conjunction with ref. 3. Here we will explain the method in the 
explicit context of the 3D Ising model with open boundary conditions, 
spelling out all the details, Assume that the energy of a bond with opposite 
spins at its ends is unity and with same-sign spins is zero. The energy 
then takes integer values in [0, V']. Solving the model is equivalent to 
determining the number of states P(E) of the system at each energy E. For  
open boundary conditions, a state with energy E can always be trans- 
formed into one with energy V ' -  E by a change of variables. Thus, P(E) = 
P ( V ' - E ) .  This means that one only needs to find P(E) for E~ [0, V'/2]. 
The partition function is given by 

V'  

z( . )=  ~ p(E)~ ~ (1) 
E = O  

where u = e -~. We will always work with u's which have a specific form: 
u = c I/m with c >/0 and m/> 1. 

One starts by enumerating all states of an LxLy Ising model (2 L~L, 
states). Since the Ising variable is a bit variable, one can choose an up spin 
to be represented by the bit value 0 and a down spin by the bit value 1. 
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The binary bits corresponding to the LxLy spins can be used to define an 
LxLy-bit integer S which labels the states. 

First, we make a digression to discuss a particular way we will store 
information in our calculation. The method relies on doing arithmetic in 
base c l/m, so we will first discuss some aspects of such calculations. Any 
polynomial with integer coefficients in the variable u = c I/m can be written 
in terms of m integers Q(j), j =  0, 1, 2,..., m -  1. Thus, it is easy to show 
that for any u =  c ~/m, the partition function 

can be written as 

Moreover, 

V' 

Z(u )=Z(c ,  m ) =  ~' P(E)c Elm (2) 
E = 0  

m - - i  

Z(c, m)=  ~ Q(k)c k/m (3) 
k = 0  

Int[(  V '  - -  k ) / m ]  

Q(k)=  ~ P ( k + j m ) c  j (4) 
j = 0  

For more detail on these points, the reader is referred to ref. 3. This ends 
the digression. 

Now, each state of LxLy spins is labeled by a LxLy-bit integer S and 
has an associated energy e(S) and a Boltzmann weight ue(S~= c e(s~/m. The 
energy function e(S) is precalculated and placed in an array of length 2 L~L~. 
In addition, we define two integer arrays I~ S) and P(k ,  S), where k 
runs from 0 to m -  1 and S from 0 to 2 L~L,- 1. The number of bits of 
accuracy necessary in the I's will be specified later. The first index of the 
arrays labels the m integers 0, 1 ..... ( m -  1) for the I's and the second labels 
the states. The I ~ are initialized as follows: 

I~ S ) =  1, VS (5a) 

I~  VS and k = l ,  2 ..... ( m - l )  (5b) 

The Boltzmann weights for the bonds in the LxLy plane are then put 
in by multiplying I ~ for the state S by ue(S( This is done by repeatedly 
multiplying I ~ by u. Note that multiplication by u is equivalent to 

(I(O,S),I(1, S) ..... I ( m - I , S ) ) - - * ( c I ( m - I , S ) , I ( O , S )  ..... I ( m - 2 ,  S)) (6) 

As described in ref. 3, the layers in the 2 direction are now built up one 
by one be the following algorithm: 

822/60/3-4-4 
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(a )  P e r f o r m  t h e  o p e r a t i o n s  

( In(0 ,  S) ,  I n ( l ,  S) ..... In(m - 1, S))  

= (I~ S), I~ S),..., I ~  1, S))  

+ (cI~ - 1, S ' ) ,  I~ S'),..., I~ S'),..., I~  - 2 ,  S ' ) )  

w h e r e  S a n d  S '  d i f fe r  in  a n y  o n e  bi t .  N e x t ,  se t  

I~ S)  = ["(k, S), Vk, S 

T h i s  p u t s  in  o n e  s p i n  in  t h e  l a y e r  ( see  ref. 3). 

( 7 a )  

( 7 b )  

Table I 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
I6 
17 
18 
19 
20 
2t 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

program ising 

C Front End Variables 
integer ll012, I3, m, cc, nproc 
parameter(ll =4 ,  12 = 2, 13 = 5, m = 102, cc = 0, nproc = 2..(11,I2)) 
integer i, j, k, maxconfig, ipar, jpar 
integer z(0 : m - 1, 0 : 1 ) 

C Connection Machine Variables 
integer help(nproc), config(nproc), spin(0 :l 1 .12-  1, nproc) 
integer ep, energy, p, c, temp 

common/cm/ep(nproc), energy(nproc), p ( 0 : m -  1, 0:a, nproc), c(nproc), 
T temp(nproc), mask(nproc) 

common/fe/ipar 
C CMFSLAYOUR explicitly declares the array indices to be serial 
C or news (i.e., processor) indces. For arrays of any rank, the 
C last index is the news index, by default. 
CMFSLAYOUT p( :serial, :serial, :news) 
CMFSLAYOUT spinC serial, :news) 
~ * * ~ * * * * * * * * * * * * * * * * ~ * * * * * * * ~ * * * * ~ * * * $ * * ~ * * * * * * ~ * * * * * * * * * * * * * ~ # * * * * * ~  

c There are many lines of code left out here. These do the initialization. 
c In particular, the array config is initialized by config(i) = i. 
c Thus, it contains a bit string that represents a 2D spin configuration. 
c energy(i) contains the energy fo the spin configuration i. 

c The core part of the code is shown below: 

nener = 2.11.12 - 11 - 12 
c nener is the maximum total energy for the bonds in the (12) plane. 
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T a b l e  I (continued) 
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32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 

c Loop over the z direction adding 13 - 1 new layers 
d o i = 0 , 1 3 - 2  

c Loop over the spins in the xy plane 
j j = l  
do l j = 0 , 1 1 . 1 2 -  1 

c ipar and jpar do the switch between the old and new I's (see Eq. 7) 
jpar = ipar 
ipar = 1 - j p a r  

c construct an array help from config where the j th bit is switched. 
jj = j j . 2  

help(:) = (1 - 2.spin(j, :))*jj + config(:) 
c the next lines implement Eq. (7) of the text [note that the p's here are the 
c I's of Eq. (7)]. 

d o 2 k = 0 ,  m - 1  
2 p(k, ipar, : )=  p(k, jpar, help(:)) 

temp(:) = p ( m -  1, ipar, :) 
d o 3 i = m - l ,  1 , - 1  
p(i, ipar, :) = p ( i -  1, ipar, :) 
p(0, ipar, :) = temp(:) 

d o 4 k = 0 ,  m - I  
p(k, ipar, :) = pp(k, ipar, :) + p(k, jpar, :) 

1 continue 

c Now put in the weights of the horizontal bonds. 
ep(:) = energy(:) 

do 5 i = 0, never - 1 
mask(:) = ep(:) .he. 0 
where(mask) temp(:) = p ( m -  1, ipar, :) 

d o 6 j = m - l ,  1 , - 1  
where(mask) p(j, ipar, :) = p(j - 1, ipar, :) 

6 continue 
where(mask) 

p(0, ipar, :) = temp(:).c(:) 
ep(:) = e p ( : ) -  1 

end where 
5 continue 
c now sum p over all configurations (all processors) to compute the partition 
c function 

z = sum(p, 3) 
print 100, (z(i, ipar), i, i = 0 ,  m -  1) 

end do 
100 format(20(2x, il0, 2x, i l0 , / ) )  

stop 
end 
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(b) Repeat step (a) once for each of the bits in S. This puts in all the 
spins in one layer. 

(c) Multiply I ~ for the state S by u e(s) [-this involves applying Eq. (6) 
repeatedly as described before]. This operation puts in the Boltzmann 
weights of the bonds in the x y  plane for the layer of spins just added. 

After the required number of layers is done, compute 

Q(k)  = ~ I~ S)  (8) 
s 

Q(k)  is related to the P ( k )  according to Eq. (4). 
Three important points should be noted from Eq. (4): 

1. For any c, and m =  V ' +  1, Q ( k ) = P ( k ) ,  k = O ,  1 ..... V'. Thus, if 
there is sufficient storage available so that m can be made as large as V', 
one can generate all the P's in one run. 

2. For c = 0 and any m, Q(k)  = P(k) ,  k = 0,..., m - 1. 

3. For  any other case, each set of c ,m values generates m rela- 
tionships between the Q's and the P's according to Eq. (4). Using 
c = 0, 1, 2,... successively, a sufficient number of such relationships must be 
generated to solve for the (approximately) V'/2  independent values of P. In 
our simulation, we found that for a 4 • 4 x 10 system, we were able to 
choose m = 192 and c = 0 to get the entire partition function in one run on 
a Connection Machine CM-2 with 233 bits of memory. However, for the 
5 • 4 x 5 system, we had to use m = 30 and make independent runs for 
c = 0 ,  1,2 .... to generate the 118 independent equations necessary to 
compute the P's from the.Q's. 

Finally, a word about the accuracy necessary in the computation. 
From Eq. (4), one notes that the maximum number of bits in Q is bounded 
by the sum of the maximum number of bits in c V'/m plus the number of bits 
in Z k  P(k) .  The latter number is obviously V because the sum equals the 
total number of states in the system, which is 2 v. Hence, the number of bits 
Nbits of accuracy in I ~ or I n satisfies 

V' log(c) 
Nblts ~ V +  - -  (9) 

m log(2) 

Since we have two arrays I ~ and I n each of size m x 2 LxLy, the storage 
S T  (in bits) is 

V'log(c)) 
S T =  2m2CxLYNbits = 2m V +  -m lo--g-~J 2v/L~ (10) 

as stated before. 
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3. THE CODE 

The program we used was implemented in C-PARIS on the Connec- 
tion Machine (PARIS stands for the Connection Machine Parallel Instruc- 
tion S e t ( 4 ) ) .  The easiest way to program the problem for a massively 
parallel machine such as the Connection Machine is to use 2 Lzcy pro- 
cessors. All arrays with an argument that runs over 2 rxcy values are spread 
over the processors. Note that this is possible even if the number of 
processors is less than 2 cxc,. This is because, on the Connection Machine, 
one can define virtual processors. In this mode, each processor divides 
up its memory into several pieces, thus serving as many processors. Of 
course, since the number of computational units is still equal to the number 
of physical processors, the improvement in speed is bounded by a factor 
equal to the number of physical processors. 

The inner loop of the code is the step of Eq. (7a). In a serial or vector 
computer, this loop would have to be done for each S separately and 

Table l l .  Partit ion Function of t h e 3 D  Ising Model  for 
Lx=4 ,  Lv=5 ,  and L z = l ,  2, 3, 4, 5 ~ 

E P(E), L,  = 1 E P(E), L~ = 2 E P(E) ,  L~ = 2 

0 2 0 2 21 21190056 
1 0 1 0 22 41936224 
2 8 2 0 23 81833224 
3 36 3 16 24 157229136 
4 76 4 48 25 296873488 
5 250 5 56 26 549817868 
6 752 6 140 27 996960024 
7 1820 7 456 28 1765855160 
8 4344 8 1192 29 3046388248 
9 10104 9 2272 30 5104139032 

10 20602 10 4942 31 8281110400 
11 38156 11 12176 32 12970188706 
12 65364 12 27608 33 19549528080 
13 98836 13 58080 34 28274100024 
14 131080 14 124764 35 39137756280 
i5 152858 15 272968 36 51728944860 

16 582684 37 65155043624 
17 1214436 38 78085969284 
18 2520552 39 88935282376 
19 5201264 40 96185893070 
20 10571648 41 98738356640 

a E denotes the possible values of the energy and P(E)  the number  of states at that energy. 
Only about half the P(E) 's  are shown. One can construct the P(E) 's  for the remaining 
energies up to V' = 3 L x L y L  ~ - L ~ L  . -  L y L  z - L , L  x using P ( E )  = P( V'  - E). 
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Table I I  (continued) 

E P(E),L~=3 E e(e) ,c~= 3 

0 2 34 168960566408 
1 0 35 319612192080 
2 0 36 600782123300 
3 16 37 1121636916756 
4 48 38 2078736963248 
5 92 39 3821963947148 
6 100 40 6966602629582 
7 512 41 12580034882528 
8 1432 42 22486093152568 
9 2720 43 39750215721880 

10 5804 44 69431445259736 
11 13392 45 119711727122326 
12 33356 46 203531431305882 
13 70548 47 340856249890966 
14 145632 48 561653802726326 
15 320390 49 909540211213592 
16 687090 50 1445833872151524 
17 1455844 51 2253406488205504 
18 3007496 52 3439267569482740 
19 6207780 53 5134323925278036 
20 12863968 54 7488378337795196 
21 26235196 55 10658418042690846 
22 53173312 56 14788842275715094 
23 107128560 57 19983699115701200 
24 214696168 58 26273264465769916 
25 428411660 59 33580011599608232 
26 848900124 60 41691459968300196 
27 1674147124 61 50248605577147974 
28 3286412636 62 58757617081607958 
29 6417955372 63 66628781943162882 
30 12473871606 64 73240792047668192 
31 24119137810 65 78021633313000432 
32 46398487414 66 80531612307490760 
33 88792359276 

would  therefore take 2 LxL~ computat ions .  On  the Connec t ion  Machine,  the 

computa t ions  are done for all S values at once. Hence, theoretically,  every- 

thing else being equal  ( C P U  speed, I /O,  code performance,  etc.), these 

calculat ions done on the Connec t ion  Machine  would  be faster compared  to 

a scalar or vector  compute r  by a factor equal  to the number  of available 

processors. 

The possibility of configuring the processors in different d imensional  

geometries on the C M  is also a decided advantage  for our  problem. This 



T a b l e  II (continued) 

E P(E), L ~ - 4  E P(E), L ~ = 4  

0 2 47 1563511250675200 
1 0 48 2889243636668444 
2 0 49 5318811742264096 
3 16 50 9752092052725712 
4 56 51 17804338901616560 
5 112 52 32357689030787028 
6 112 53 58521965081542608 
7 608 54 105294105546334176 
8 1812 55 188397516161014016 
9 3712 56 335091352548934300 

10 7912 57 592227093744106128 
11 18224 58 1039584650010233248 
12 47428 59 1811662842032952976 
13 105328 60 3132784073535606840 
14 224896 61 5372784316131293616 
15 498800 62 9133886266743986192 
16 1095788 63 15383743389128191600 
17 2413936 64 25655108576387177966 
18 5132800 65 42338853191864887680 
19 10811360 66 69103382878898694864 
20 22868084 67 111478350198272356000 
21 47883680 68 - 177641402891077968116 
22 99515088 69 279439772203236133472 
23 204435264 70 433658872628887404048 
24 417729172 71 663512187574211432832 
25 850371792 72 1000265594451155033100 
26 1717248736 73 1484822655912270464832 
27 3447167792 74 2168988596889183774456 
28 6880851028 75 3116011911866416289744 
29 13662938144 76 4399897459675202646588 
30 26998590136 77 6102929083309597563056 
31 53072093536 78 8310877267805936919472 
32 103848067428 79 11105541705811090017984 
33 202310582144 80 14554619025980130404078 
34 392441899400 81 18699389865779547850592 
35 758232552224 82 23541337015623652260648 
36 1459256298208 83 29029433210633185007040 
37 2798018995168 84 35050322703050240185260 
38 5346036995848 85 41423795004781141644480 
39 10179231529008 86 47905667521977206541944 
40 19317593515850 87 54199388920730701695680 
41 36540450951952 88 59976399877717496811932 
42 68896352202848 89 64903733067748664039120 
43 129488175256352 90 68675805358111933766200 
44 242586293631232 91 71046207657110339443824 
45 452984862584256 92 71854845789506804272616 
46 843035430751760 
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Table II (continued) 

E P(E), Lz=5 E P(E), Lz= 5 

0 2 32 245570743258 
1 0 33 489615658068 
2 0 34 971671907300 
3 16 35 1919588750576 
4 64 36 3775153361772 
5 132 37 7392726655148 
6 132 38 14417558257408 
7 688 39 28006100698820 
8 2232 40 54193314806976 
9 5012 41 104477937316974 

10 10372 42 200702223335232 
11 23868 43 384223003158216 
12 65304 44 733109783815568 
13 143300 45 1394315017278680 
14 334972 46 2643666718296136 
15 744808 47 4997496654574032 
16 1694638 48 9419793266848240 
17 3877236 49 17705673587591156 
18 8477720 50 33189573318793390 
19 18271848 51 62049816560886296 
20 39576288 52 115706001027649668 
21 85460904 53 215213616866306812 
22 182793492 54 39929910564326748 
23 385227164 55 739012858391124332 
24 807454464 56 1364377978033611848 
25 1687115266 57 2512717932778028966 
26 3500595644 58 4616038752152925112 
27 7211089480 59 8458531174306491880 
28 14754704112 60 15459522240603432648 
29 30038656980 61 28180012960496541868 
30 60849001180 62 51226098210424957576 
31 122562123172 

is because the step of getting data from S' to S in Eq. (7a), with S' dif- 
ferent from S, in one bit can be done in one move (using NEWS on the 
CM(4)). This is done by configuring the geometry so that the 2 LxL~ 
processors are on the vertices of an LxLy-dimensional hypercube with two 
sites in each dimension. Then S' is always a nearest-neighbor site to S 
along an axis and so the fetch from S' to S is very fast. Since the CM-2 
can be configured as a hypercube of up to 31 dimensions, we were able to 
use it as a 20-dimensional hypercube for our 5 x 4 x 5 lattice study. An 
important reason to use PARIS (for this particular problem) is that the 
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E e(f), Lz=5 e e (e ) ,Lz-5  

63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
8o 
81 
82 
83 
84 
85 
86 
87 
88 
89 
9o 

92853847640001354572 
167808256532951181688 
302322596606763325072 
542879939360811490858 
971489386562814514132 
1732175624094562158696 
3076645273437637029120 
5442523949092898979060 
9586507131640603631504 
16809369419208639572836 
29333344843218566930864 
50929990842067876849012 
87955879924818419255030 
151045495067802951008192 
257851567417746558772508 
437435167621314227787024 
737221376422658287042816 
1233890523976485963942596 
2050218032815681882539288 
3380762924709505076582434 
5530492007367577105010424 
8971958395886235202798363 
14428542256092276964866248 
22993457860034691356712956 
36296575913338752971519676 
56733282165684257461839120 
87771046765519691329674804 
134349289564711723962126008 

91 203385367030718396316486342 
92 304392680616068479646386232 
93 450204483954554837265817536 
94 657777553358617243451582820 
95 949022658746010760733979684 
96 1351574062691098629282706740 
97 1899370249433742877486111652 
98 2632877372462008229589652680 
99 3598752969848385295392493652 

100 4848730460399075995576134292 
101 6437516633105659269720535852 
102 8419546368897615321993662380 
103 10844539650197267452578705620 
104 13751957368810714602087124348 
105 17164646394529323578290086648 
106 21082180428038954999877558464 
107 25474608682198235910342973950 
108 30277477626405491950663227908 
109 35389047528601978553123103984 
110 40670547790868750567499276652 
111 45950082889159072732537729624 
112 51030420355704594119025295656 
113 55700401302105534320187883732 
114 59749179756651897941132252092 
115 62982007278965463962653620400 
116 65235926198099998753008434080 
117 66393595876006711062805752772 

word length can be made larger than 32 bits. As discussed above, I ~ and  I" 
must  have bit accuracy greater than  32 for large V. This is possible in a 
straightforward way with PARIS, whereas for a higher-level language like 

F O R T R A N ,  one would have to do the many-b i t  precision ari thmetic in 
software. 

In  addi t ion  to PARIS, we also p rogrammed the problem in 

C M - F O R T R A N  for the Connec t ion  Machine.  The interesting parts of the 
F O R T R A N  code are given in Table  I. The C M - F O R T R A N  code for our  
problem is given in Table  I. First, the size declarat ions are shown and after 
that  the array dimensions that are to be spread across the processors are 
explicitly defined as n e w s  dimensions  by the C M F $ L A Y O U T  command.  In  
the complete program, there are several lines of code after that  (about  65) 

that  do initialization. These are not  shown in Table I. Instead, only the 
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Fig. I. The zeros of the 3D Is ing model  for 5 x 4 x L z lat t ices for L z = 1 , 2 , 3 , 4 .  

part that implements Eq. (7), which is the core part of the code, is shown. 
Note the neat and simple format of the CM-FORTRAN parallel instruc- 
tions. For  instance, the command help(:) . . . .  on line 42 will execute in 
parallel for all the processors. The compiler recognizes from the syntax of 
the statement that the statement is a CM-FORTRAN statement and hence 
should be executed on the Connection Machine. Also, it recognizes that 
help is an array that is defined across the Connection Machine processors 
and allocates memory accordingly. The comments in Table I are meant to 
explain the flow of the logic of the code. 
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Fig. 2. The zeros of the 3D Is ing model  for a 5 x 4 x 5 lattice. 
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Fig. 3. 

1.0 / - 4  

o o / /  

"~ 0.13 / 

0.2 j 

o.o , , , I  . . . .  I . . . .  I . . . .  r . . . .  I ,  
0.2 0.4 O+O 0.8 1 ~-W,' 

The imaginary part of the zero closest to the Re(u) axis as a function of L71/~. We 
have used v = 0.6295. (6) 

For this particular problem, FORTRAN is not the language of choice. 
The reason is that the word length in FORTRAN is fixed (to 32 bits in our 
case). This is an inherent limitation of FORTRAN and although one c a n  

do higher-accuracy arithmetic in FORTRAN, it must be done in software. 
The FORTRAN code of Table I can only handle situations where V is less 
than 33. 

4. THE RESULTS 

The partition functions for 5 x 4 x L  for L~  [1, 5] are given in 
Table II. We have checked the numbers in Tabled II by generating data for 
Q(k) at values of c other than those used to generate Table I! and checking 
that Eq. (4) is satisfied. The zero (5'6) of the partition function in the 
complex u plane obtained from the data are shown in Figs. 1 and 2. Note 
the accumulation of these zeros toward the real u axis. In Fig. 3, we plot 
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0.I0 

0.05 

. . . .  I . . . .  I . . . .  I . . . .  I '  ' - ' ~ - F  -< 

Fig. 4. 

o.oo F . . . .  I . . . .  I . . . .  I . . . .  P . . . .  r ,  o 0.2 0.4 0.~ 0 13 1 

v - 1 / ( a v )  

The imaginary part of the zero closest to the Re(u) axis as a function of V 1/(3~1, 

where V= L x L y L  z is the volume. 
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the imaginary part of the zero closest to the real u axis as a function of 
Lz 1Iv and in Fig. 4 as a function of V ~/~3v),(1.3,5,6) using v = 0.6295(10). (6) 
If Lx and Ly were infinite, the scaling law that this quantity would satisfy 
is (y) 

Im(ul(L)) ~ L~ ~/~ (t 1 ) 

It is clear that because of the finiteness of Lx and Ly, finite-size effects in 
our case are more subtle. We will present a detailed discussion on this issue 
as well as on other matters (such as estimating v and/~c from our data) in 
a later publication. 

It would also be interesting to extend these calculations to a 5 x 5 x 5 
lattice. However, this would require a minimum memory of 1.39 x 101~ bits. 
One could get this amount of storage on the Thinking Machines' Data 
Vault. This is currently being pursued. (8) 
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