
Journal of Statistical Physics, Vol. 60, Nos. 3/4, 1990

Solving the Ising Model Exactly on a 5 x 5 x 4 Lattice
Using the Connection Machine

Gyan Bhanot ~'2 and Srikanth Sastry 3

Received December 13, 1989; final February 6, 1990

We implement a recently proposed exact method for solving distrete statistical
models for the 3-dimensional Ising model with open boundary conditions. Our
computations were done on the Connection machine because the problem maps
very naturally onto massively parallel architectures. We explicitly calculate the
number of states of the system at each energy for systems of size 5 x 4 x L, for
Lz ~< 5. On serial or vector computers, the time for the computation scales with
the volume V like V2 L-'L~. On the Connection Machine, the calculation can be
spread across the processors. This decreases the computation requirements by a
factor equal to the number of processors. We describe the method, its
implementation on the Connection Machine both in PARIS and in FORTRAN,
and our results. We also state the requirements for solving larger systems using
this method.

KEY WORDS: Ising; exact; partition function; massively-parallel architec-
ture; zeros; critical exponents.

1. I N T R O D U C T I O N

The n u m b e r of s tates in an L x x Ly • Lz Is ing m o d e l is 2 v, where V =

L x L y L z is the la t t ice vo lume . G e n e r a t i n g one s ta te eve ry n a n o s e c o n d , it

w o u l d t ake a b o u t 4 x 1013 years to gene ra t e all s ta tes for a cube of size

4 x 5 x 5. P e a r s o n (1) first desc r ibed a m e t h o d tha t m a d e it poss ib le to cut

d o w n the n u m b e r o f s tates g e n e r a t e d to a squa re r o o t o f the to ta l n u m b e r

and he used the m e t h o d to solve a 4 x 4 x 4 system. Recent ly , insp i red by

Thinking Machines Corp., Cambridge, Massachusetts 02142.
2 0n leave from Physics Department, San Francisco State University, San Francisco, Califor-

nia, and Supercomputer Computations Research Institute, Florida State University,
Tallahassee, Florida.

3 Physics Department, Boston University, Boston, Massachusetts 02215.

333

0022-4715/90/0800-0333506.00/0 �9 1990 Plenum Publishing Corporation

334 Bhanot and Sastry

earlier work of Binder, (2) Bhanot (3~ has described a method to solve the
problem in a time that scales for serial and vector computers like V2 v/LZ.
For massively parallel computers such as the Connection Machine, it is
obvious that with 2 p processors, the computer time scales like V2 LxL)'-n,
since the calculation can be spread out across the processors. For the most
direct implementation of the method, the storage required scales like
VIV2 v/Lz, where V'= 3 V - L x L y - L y L z - L~L x for open boundary
conditions. V' is the number of bonds in the system. It is also the
maximum possible value of the total energy. As a described below, the
storage requirement can be reduced to

V' log(c)'] 2v/L ~
2m V + m ~ j

where m and c are integers (m ~ [1, V'/2] and c = 1, 2, 3, 4,...). In this case,
however, one needs to do about V'/2m separate runs at different values of
c (and fixed m) and reconstruct the full solution from these runs. However,
each of the runs needs less computations by just the correct factor to
ensure that the total computational requirements remain the same.

2. T H E M E T H O D

The method we will use is described in ref. 3. The present paper should
be read in conjunction with ref. 3. Here we will explain the method in the
explicit context of the 3D Ising model with open boundary conditions,
spelling out all the details, Assume that the energy of a bond with opposite
spins at its ends is unity and with same-sign spins is zero. The energy
then takes integer values in [0, V']. Solving the model is equivalent to
determining the number of states P(E) of the system at each energy E. For
open boundary conditions, a state with energy E can always be trans-
formed into one with energy V ' - E by a change of variables. Thus, P(E) =
P (V ' - E) . This means that one only needs to find P(E) for E~ [0, V'/2].
The partition function is given by

V'

z(.)= ~ p(E)~ ~ (1)
E = O

where u = e -~. We will always work with u's which have a specific form:
u = c I/m with c >/0 and m/> 1.

One starts by enumerating all states of an LxLy Ising model (2 L~L,
states). Since the Ising variable is a bit variable, one can choose an up spin
to be represented by the bit value 0 and a down spin by the bit value 1.

Solving Ising Model Exactly 335

The binary bits corresponding to the LxLy spins can be used to define an
LxLy-bit integer S which labels the states.

First, we make a digression to discuss a particular way we will store
information in our calculation. The method relies on doing arithmetic in
base c l/m, so we will first discuss some aspects of such calculations. Any
polynomial with integer coefficients in the variable u = c I/m can be written
in terms of m integers Q(j), j = 0, 1, 2,..., m - 1. Thus, it is easy to show
that for any u = c ~/m, the partition function

can be written as

Moreover,

V'

Z(u)=Z(c , m) = ~' P(E)c Elm (2)
E = 0

m - - i

Z(c, m)= ~ Q(k)c k/m (3)
k = 0

Int[(V ' - - k) / m]

Q(k)= ~ P (k + j m) c j (4)
j = 0

For more detail on these points, the reader is referred to ref. 3. This ends
the digression.

Now, each state of LxLy spins is labeled by a LxLy-bit integer S and
has an associated energy e(S) and a Boltzmann weight ue(S~= c e(s~/m. The
energy function e(S) is precalculated and placed in an array of length 2 L~L~.
In addition, we define two integer arrays I~ S) and P(k , S), where k
runs from 0 to m - 1 and S from 0 to 2 L~L,- 1. The number of bits of
accuracy necessary in the I's will be specified later. The first index of the
arrays labels the m integers 0, 1 (m - 1) for the I's and the second labels
the states. The I ~ are initialized as follows:

I~ S) = 1, VS (5a)

I~ VS and k = l , 2 (m - l) (5b)

The Boltzmann weights for the bonds in the LxLy plane are then put
in by multiplying I ~ for the state S by ue(S(This is done by repeatedly
multiplying I ~ by u. Note that multiplication by u is equivalent to

(I(O,S),I(1, S) I (m - I , S)) - - * (c I (m - I , S) , I (O , S) I (m - 2 , S)) (6)

As described in ref. 3, the layers in the 2 direction are now built up one
by one be the following algorithm:

822/60/3-4-4

336 Bhanot and Sastry

(a) P e r f o r m t h e o p e r a t i o n s

(In(0 , S) , I n (l , S) In(m - 1, S))

= (I~ S), I~ S),..., I ~ 1, S))

+ (cI~ - 1, S ') , I~ S'),..., I~ S'),..., I~ - 2 , S '))

w h e r e S a n d S ' d i f fe r in a n y o n e bi t . N e x t , se t

I~ S) = ["(k, S), Vk, S

T h i s p u t s in o n e s p i n in t h e l a y e r (see ref. 3).

(7 a)

(7 b)

Table I

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
I6
17
18
19
20
2t
22
23
24
25
26
27
28
29
30
31

program ising

C Front End Variables
integer ll012, I3, m, cc, nproc
parameter(ll =4 , 12 = 2, 13 = 5, m = 102, cc = 0, nproc = 2..(11,I2))
integer i, j, k, maxconfig, ipar, jpar
integer z(0 : m - 1, 0 : 1)

C Connection Machine Variables
integer help(nproc), config(nproc), spin(0 :l 1 .12- 1, nproc)
integer ep, energy, p, c, temp

common/cm/ep(nproc), energy(nproc), p (0 : m - 1, 0:a, nproc), c(nproc),
T temp(nproc), mask(nproc)

common/fe/ipar
C CMFSLAYOUR explicitly declares the array indices to be serial
C or news (i.e., processor) indces. For arrays of any rank, the
C last index is the news index, by default.
CMFSLAYOUT p(:serial, :serial, :news)
CMFSLAYOUT spinC serial, :news)
~ * * ~ * * * * * * * * * * * * * * * * ~ * * * * * * * ~ * * * * ~ * * * $ * * ~ * * * * * * ~ * * * * * * * * * * * * * ~ # * * * * * ~

c There are many lines of code left out here. These do the initialization.
c In particular, the array config is initialized by config(i) = i.
c Thus, it contains a bit string that represents a 2D spin configuration.
c energy(i) contains the energy fo the spin configuration i.

c The core part of the code is shown below:

nener = 2.11.12 - 11 - 12
c nener is the maximum total energy for the bonds in the (12) plane.

Solving Ising Model Exactly

T a b l e I (continued)

337

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

c Loop over the z direction adding 13 - 1 new layers
d o i = 0 , 1 3 - 2

c Loop over the spins in the xy plane
j j = l
do l j = 0 , 1 1 . 1 2 - 1

c ipar and jpar do the switch between the old and new I's (see Eq. 7)
jpar = ipar
ipar = 1 - j p a r

c construct an array help from config where the j th bit is switched.
jj = j j . 2

help(:) = (1 - 2.spin(j, :))*jj + config(:)
c the next lines implement Eq. (7) of the text [note that the p's here are the
c I's of Eq. (7)].

d o 2 k = 0 , m - 1
2 p(k, ipar, :)= p(k, jpar, help(:))

temp(:) = p (m - 1, ipar, :)
d o 3 i = m - l , 1 , - 1
p(i, ipar, :) = p (i - 1, ipar, :)
p(0, ipar, :) = temp(:)

d o 4 k = 0 , m - I
p(k, ipar, :) = pp(k, ipar, :) + p(k, jpar, :)

1 continue

c Now put in the weights of the horizontal bonds.
ep(:) = energy(:)

do 5 i = 0, never - 1
mask(:) = ep(:) .he. 0
where(mask) temp(:) = p (m - 1, ipar, :)

d o 6 j = m - l , 1 , - 1
where(mask) p(j, ipar, :) = p(j - 1, ipar, :)

6 continue
where(mask)

p(0, ipar, :) = temp(:).c(:)
ep(:) = e p (:) - 1

end where
5 continue
c now sum p over all configurations (all processors) to compute the partition
c function

z = sum(p, 3)
print 100, (z(i, ipar), i, i = 0 , m - 1)

end do
100 format(20(2x, il0, 2x, i l0 , /))

stop
end

338 Bhanot and Sastry

(b) Repeat step (a) once for each of the bits in S. This puts in all the
spins in one layer.

(c) Multiply I ~ for the state S by u e(s) [-this involves applying Eq. (6)
repeatedly as described before]. This operation puts in the Boltzmann
weights of the bonds in the x y plane for the layer of spins just added.

After the required number of layers is done, compute

Q(k) = ~ I~ S) (8)
s

Q(k) is related to the P (k) according to Eq. (4).
Three important points should be noted from Eq. (4):

1. For any c, and m = V ' + 1, Q (k) = P (k) , k = O , 1 V'. Thus, if
there is sufficient storage available so that m can be made as large as V',
one can generate all the P's in one run.

2. For c = 0 and any m, Q(k) = P(k) , k = 0,..., m - 1.

3. For any other case, each set of c ,m values generates m rela-
tionships between the Q's and the P's according to Eq. (4). Using
c = 0, 1, 2,... successively, a sufficient number of such relationships must be
generated to solve for the (approximately) V'/2 independent values of P. In
our simulation, we found that for a 4 • 4 x 10 system, we were able to
choose m = 192 and c = 0 to get the entire partition function in one run on
a Connection Machine CM-2 with 233 bits of memory. However, for the
5 • 4 x 5 system, we had to use m = 30 and make independent runs for
c = 0 , 1,2 to generate the 118 independent equations necessary to
compute the P's from the.Q's.

Finally, a word about the accuracy necessary in the computation.
From Eq. (4), one notes that the maximum number of bits in Q is bounded
by the sum of the maximum number of bits in c V'/m plus the number of bits
in Z k P(k) . The latter number is obviously V because the sum equals the
total number of states in the system, which is 2 v. Hence, the number of bits
Nbits of accuracy in I ~ or I n satisfies

V' log(c)
Nblts ~ V + - - (9)

m log(2)

Since we have two arrays I ~ and I n each of size m x 2 LxLy, the storage
S T (in bits) is

V'log(c))
S T = 2m2CxLYNbits = 2m V + -m lo--g-~J 2v/L~ (10)

as stated before.

Solving Ising Model Exactly 339

3. THE CODE

The program we used was implemented in C-PARIS on the Connec-
tion Machine (PARIS stands for the Connection Machine Parallel Instruc-
tion S e t (4)) . The easiest way to program the problem for a massively
parallel machine such as the Connection Machine is to use 2 Lzcy pro-
cessors. All arrays with an argument that runs over 2 rxcy values are spread
over the processors. Note that this is possible even if the number of
processors is less than 2 cxc,. This is because, on the Connection Machine,
one can define virtual processors. In this mode, each processor divides
up its memory into several pieces, thus serving as many processors. Of
course, since the number of computational units is still equal to the number
of physical processors, the improvement in speed is bounded by a factor
equal to the number of physical processors.

The inner loop of the code is the step of Eq. (7a). In a serial or vector
computer, this loop would have to be done for each S separately and

Table l l . Partit ion Function of t h e 3 D Ising Model for
Lx=4 , Lv=5 , and L z = l , 2, 3, 4, 5 ~

E P(E), L, = 1 E P(E), L~ = 2 E P(E) , L~ = 2

0 2 0 2 21 21190056
1 0 1 0 22 41936224
2 8 2 0 23 81833224
3 36 3 16 24 157229136
4 76 4 48 25 296873488
5 250 5 56 26 549817868
6 752 6 140 27 996960024
7 1820 7 456 28 1765855160
8 4344 8 1192 29 3046388248
9 10104 9 2272 30 5104139032

10 20602 10 4942 31 8281110400
11 38156 11 12176 32 12970188706
12 65364 12 27608 33 19549528080
13 98836 13 58080 34 28274100024
14 131080 14 124764 35 39137756280
i5 152858 15 272968 36 51728944860

16 582684 37 65155043624
17 1214436 38 78085969284
18 2520552 39 88935282376
19 5201264 40 96185893070
20 10571648 41 98738356640

a E denotes the possible values of the energy and P(E) the number of states at that energy.
Only about half the P(E) 's are shown. One can construct the P(E) 's for the remaining
energies up to V' = 3 L x L y L ~ - L ~ L . - L y L z - L , L x using P (E) = P(V' - E).

340 Bhanot and Sastry

Table I I (continued)

E P(E),L~=3 E e(e) ,c~= 3

0 2 34 168960566408
1 0 35 319612192080
2 0 36 600782123300
3 16 37 1121636916756
4 48 38 2078736963248
5 92 39 3821963947148
6 100 40 6966602629582
7 512 41 12580034882528
8 1432 42 22486093152568
9 2720 43 39750215721880

10 5804 44 69431445259736
11 13392 45 119711727122326
12 33356 46 203531431305882
13 70548 47 340856249890966
14 145632 48 561653802726326
15 320390 49 909540211213592
16 687090 50 1445833872151524
17 1455844 51 2253406488205504
18 3007496 52 3439267569482740
19 6207780 53 5134323925278036
20 12863968 54 7488378337795196
21 26235196 55 10658418042690846
22 53173312 56 14788842275715094
23 107128560 57 19983699115701200
24 214696168 58 26273264465769916
25 428411660 59 33580011599608232
26 848900124 60 41691459968300196
27 1674147124 61 50248605577147974
28 3286412636 62 58757617081607958
29 6417955372 63 66628781943162882
30 12473871606 64 73240792047668192
31 24119137810 65 78021633313000432
32 46398487414 66 80531612307490760
33 88792359276

would therefore take 2 LxL~ computat ions . On the Connec t ion Machine, the

computa t ions are done for all S values at once. Hence, theoretically, every-

thing else being equal (C P U speed, I /O, code performance, etc.), these

calculat ions done on the Connec t ion Machine would be faster compared to

a scalar or vector compute r by a factor equal to the number of available

processors.

The possibility of configuring the processors in different d imensional

geometries on the C M is also a decided advantage for our problem. This

T a b l e II (continued)

E P(E), L ~ - 4 E P(E), L ~ = 4

0 2 47 1563511250675200
1 0 48 2889243636668444
2 0 49 5318811742264096
3 16 50 9752092052725712
4 56 51 17804338901616560
5 112 52 32357689030787028
6 112 53 58521965081542608
7 608 54 105294105546334176
8 1812 55 188397516161014016
9 3712 56 335091352548934300

10 7912 57 592227093744106128
11 18224 58 1039584650010233248
12 47428 59 1811662842032952976
13 105328 60 3132784073535606840
14 224896 61 5372784316131293616
15 498800 62 9133886266743986192
16 1095788 63 15383743389128191600
17 2413936 64 25655108576387177966
18 5132800 65 42338853191864887680
19 10811360 66 69103382878898694864
20 22868084 67 111478350198272356000
21 47883680 68 - 177641402891077968116
22 99515088 69 279439772203236133472
23 204435264 70 433658872628887404048
24 417729172 71 663512187574211432832
25 850371792 72 1000265594451155033100
26 1717248736 73 1484822655912270464832
27 3447167792 74 2168988596889183774456
28 6880851028 75 3116011911866416289744
29 13662938144 76 4399897459675202646588
30 26998590136 77 6102929083309597563056
31 53072093536 78 8310877267805936919472
32 103848067428 79 11105541705811090017984
33 202310582144 80 14554619025980130404078
34 392441899400 81 18699389865779547850592
35 758232552224 82 23541337015623652260648
36 1459256298208 83 29029433210633185007040
37 2798018995168 84 35050322703050240185260
38 5346036995848 85 41423795004781141644480
39 10179231529008 86 47905667521977206541944
40 19317593515850 87 54199388920730701695680
41 36540450951952 88 59976399877717496811932
42 68896352202848 89 64903733067748664039120
43 129488175256352 90 68675805358111933766200
44 242586293631232 91 71046207657110339443824
45 452984862584256 92 71854845789506804272616
46 843035430751760

342 Bhanot and Sastry

Table II (continued)

E P(E), Lz=5 E P(E), Lz= 5

0 2 32 245570743258
1 0 33 489615658068
2 0 34 971671907300
3 16 35 1919588750576
4 64 36 3775153361772
5 132 37 7392726655148
6 132 38 14417558257408
7 688 39 28006100698820
8 2232 40 54193314806976
9 5012 41 104477937316974

10 10372 42 200702223335232
11 23868 43 384223003158216
12 65304 44 733109783815568
13 143300 45 1394315017278680
14 334972 46 2643666718296136
15 744808 47 4997496654574032
16 1694638 48 9419793266848240
17 3877236 49 17705673587591156
18 8477720 50 33189573318793390
19 18271848 51 62049816560886296
20 39576288 52 115706001027649668
21 85460904 53 215213616866306812
22 182793492 54 39929910564326748
23 385227164 55 739012858391124332
24 807454464 56 1364377978033611848
25 1687115266 57 2512717932778028966
26 3500595644 58 4616038752152925112
27 7211089480 59 8458531174306491880
28 14754704112 60 15459522240603432648
29 30038656980 61 28180012960496541868
30 60849001180 62 51226098210424957576
31 122562123172

is because the step of getting data from S' to S in Eq. (7a), with S' dif-
ferent from S, in one bit can be done in one move (using NEWS on the
CM(4)). This is done by configuring the geometry so that the 2 LxL~
processors are on the vertices of an LxLy-dimensional hypercube with two
sites in each dimension. Then S' is always a nearest-neighbor site to S
along an axis and so the fetch from S' to S is very fast. Since the CM-2
can be configured as a hypercube of up to 31 dimensions, we were able to
use it as a 20-dimensional hypercube for our 5 x 4 x 5 lattice study. An
important reason to use PARIS (for this particular problem) is that the

Solving Ising Model Exactly

Table I I (continued)

343

E e(f), Lz=5 e e (e) ,Lz-5

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
8o
81
82
83
84
85
86
87
88
89
9o

92853847640001354572
167808256532951181688
302322596606763325072
542879939360811490858
971489386562814514132
1732175624094562158696
3076645273437637029120
5442523949092898979060
9586507131640603631504
16809369419208639572836
29333344843218566930864
50929990842067876849012
87955879924818419255030
151045495067802951008192
257851567417746558772508
437435167621314227787024
737221376422658287042816
1233890523976485963942596
2050218032815681882539288
3380762924709505076582434
5530492007367577105010424
8971958395886235202798363
14428542256092276964866248
22993457860034691356712956
36296575913338752971519676
56733282165684257461839120
87771046765519691329674804
134349289564711723962126008

91 203385367030718396316486342
92 304392680616068479646386232
93 450204483954554837265817536
94 657777553358617243451582820
95 949022658746010760733979684
96 1351574062691098629282706740
97 1899370249433742877486111652
98 2632877372462008229589652680
99 3598752969848385295392493652

100 4848730460399075995576134292
101 6437516633105659269720535852
102 8419546368897615321993662380
103 10844539650197267452578705620
104 13751957368810714602087124348
105 17164646394529323578290086648
106 21082180428038954999877558464
107 25474608682198235910342973950
108 30277477626405491950663227908
109 35389047528601978553123103984
110 40670547790868750567499276652
111 45950082889159072732537729624
112 51030420355704594119025295656
113 55700401302105534320187883732
114 59749179756651897941132252092
115 62982007278965463962653620400
116 65235926198099998753008434080
117 66393595876006711062805752772

word length can be made larger than 32 bits. As discussed above, I ~ and I"
must have bit accuracy greater than 32 for large V. This is possible in a
straightforward way with PARIS, whereas for a higher-level language like

F O R T R A N , one would have to do the many-b i t precision ari thmetic in
software.

In addi t ion to PARIS, we also p rogrammed the problem in

C M - F O R T R A N for the Connec t ion Machine. The interesting parts of the
F O R T R A N code are given in Table I. The C M - F O R T R A N code for our
problem is given in Table I. First, the size declarat ions are shown and after
that the array dimensions that are to be spread across the processors are
explicitly defined as n e w s dimensions by the C M F $ L A Y O U T command. In
the complete program, there are several lines of code after that (about 65)

that do initialization. These are not shown in Table I. Instead, only the

344 Bhanot and Sastry

-s
Re(u)

L z = 1 , 2 , 3 , 4 c l o c h e f r o m b o t t o m l e l t

, , . ; ~ , , ~ , ~ , o . . . , , a

o

~ o ~p o a ~ o g ~ o ~
o

o o o o
. . . . [l I I ' - ~ I~ �9 '~ I

o o Da
~162176

: ~176 / J o o ~ a

. ~ 1 7 6 % 0 o

-0,5 0 0.5 -t -0.5 0 O.g
RKu)

Fig. I. The zeros of the 3D Is ing model for 5 x 4 x L z lat t ices for L z = 1 , 2 , 3 , 4 .

part that implements Eq. (7), which is the core part of the code, is shown.
Note the neat and simple format of the CM-FORTRAN parallel instruc-
tions. For instance, the command help(:) on line 42 will execute in
parallel for all the processors. The compiler recognizes from the syntax of
the statement that the statement is a CM-FORTRAN statement and hence
should be executed on the Connection Machine. Also, it recognizes that
help is an array that is defined across the Connection Machine processors
and allocates memory accordingly. The comments in Table I are meant to
explain the flow of the logic of the code.

1 . 0

0 . 5

tin(u)
o.o

-G5

1.o

o.5

o.o

-o.5

-L0

1 , 0 , i

a

0 , 5 D
o o

0 . 0

a
- 0 . 5

- l ,O '

-i

' ' i

[I

L z = 5

1

o g ~ a

~

/
o ~ ~ o o o

~ g

o O o
o

I I ~ i i i l i i i I i i i i r

-0.5 0 0.5

Re(u)

Fig. 2. The zeros of the 3D Is ing model for a 5 x 4 x 5 lattice.

Solving Ising Model Exactly 345

Fig. 3.

1.0 / - 4

o o / /

"~ 0.13 /

0.2 j

o.o , , , I I I r I ,
0.2 0.4 O+O 0.8 1 ~-W,'

The imaginary part of the zero closest to the Re(u) axis as a function of L71/~. We
have used v = 0.6295. (6)

For this particular problem, FORTRAN is not the language of choice.
The reason is that the word length in FORTRAN is fixed (to 32 bits in our
case). This is an inherent limitation of FORTRAN and although one c a n

do higher-accuracy arithmetic in FORTRAN, it must be done in software.
The FORTRAN code of Table I can only handle situations where V is less
than 33.

4. THE RESULTS

The partition functions for 5 x 4 x L for L~ [1, 5] are given in
Table II. We have checked the numbers in Tabled II by generating data for
Q(k) at values of c other than those used to generate Table I! and checking
that Eq. (4) is satisfied. The zero (5'6) of the partition function in the
complex u plane obtained from the data are shown in Figs. 1 and 2. Note
the accumulation of these zeros toward the real u axis. In Fig. 3, we plot

&

0.20

O,lfi

0.I0

0.05

. . . . I I I I ' ' - ' ~ - F -<

Fig. 4.

o.oo F I I I P r , o 0.2 0.4 0.~ 0 13 1

v - 1 / (a v)

The imaginary part of the zero closest to the Re(u) axis as a function of V 1/(3~1,

where V= L x L y L z is the volume.

346 Bhanot and Sastry

the imaginary part of the zero closest to the real u axis as a function of
Lz 1Iv and in Fig. 4 as a function of V ~/~3v),(1.3,5,6) using v = 0.6295(10). (6)
If Lx and Ly were infinite, the scaling law that this quantity would satisfy
is (y)

Im(ul(L)) ~ L~ ~/~ (t 1)

It is clear that because of the finiteness of Lx and Ly, finite-size effects in
our case are more subtle. We will present a detailed discussion on this issue
as well as on other matters (such as estimating v and/~c from our data) in
a later publication.

It would also be interesting to extend these calculations to a 5 x 5 x 5
lattice. However, this would require a minimum memory of 1.39 x 101~ bits.
One could get this amount of storage on the Thinking Machines' Data
Vault. This is currently being pursued. (8)

ACKNOWLEDGMENTS

The research of S.S. was supported by NATO, NSF, and the Office of
Naval Research. S.S. thanks Gene Stanley for his encouragement and
support. We thank Boston University for the use of their Connection
Machine. G.B. thanks Denny Dahl, Roscoe Giles, Kyra Lowther, Jacek
Myczkowski, Robert Putnam, and John Richardson for help with the code
and many useful discussions and Profs. Claudio Rebbi and Gene Stanley
for their generous and continuing hospitality at Boston University. G.B.
also acknowledges the support of the Florida State University Super-
computer Computations Research Institute, which is partially funded by
the U.S. Department of Energy through contract DE-FC05-85ER250000.

REFERENCES

1. R. Pearson, Phys. Rev. B 26:6285 (1982).
2. K. Binder, Physica 62:508 (1972).
3. G. Bhanot, CERN preprint CERN-TH-5474/89 (19898); J. Stat. Phys., to appear.
4. Thinking Machines Corporation, Parallel Instruction Set Manual, Cambridge,

Massachusetts.
5. C. N. Yang and T. D. Lee, Phys. Rev. 87:101, 110 (1952); M. Fisher, in Lectures in

Theoretical Physics, Vol. 12C (University of Colorado Press, Boulder, Colorado, 1965),
p. 1.

6. G. Bhanot, R. Salvador, S. Black, P. Carter, and R. Total, Phys. Rev. Lett. 59:803 (1987).
7. C. Itzykson, R. Pearson, and J.-B. Zuber, Nucl. Phys. B 220:415 (1983).
8. G. Bhanot, J. Richardson, and S. Sastry, work in progress.

